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ABSTRACT

Predicting how a point mutation alters a protein’s stability
can guide drug design initiatives which aim to counter the
effects of serious diseases. Mutagenesis studies give insights
about the effects of amino acid substitutions, but such wet-lab
work is prohibitive due to the time and costs needed to assess
the consequences of even a single mutation. Computational
methods for predicting the effects of a mutation are available,
with promising accuracy rates. In this work we study the
utility of several machine learning methods and their ability
to predict the effects of mutations. We in silico generate
mutant protein structures, and compute several rigidity met-
rics for each of them. Our approach does not require costly
calculations of energy functions that rely on atomic-level
statistical mechanics and molecular energetics. Our metrics
are features for support vector regression, random forest, and
deep neural network methods. We validate the effects of our
in silico mutations against experimental ∆∆G stability data.
We attain Pearson Correlations upwards of 0.69.

CCS CONCEPTS

�Computing methodologies → Machine learning algo-
rithms;
�Applied computing → Bioinformatics; Molecular struc-
tural biology;
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1 INTRODUCTION

The amino acid sequence of a protein determines its structure
and as a result, its function. Even a single amino acid
substitution can alter a protein’s shape, which can be the
cause of a debilitating disease. For example, mutations of
α-galactosidase cause Fabry disease, a disorder that causes
cardiac and kidney complications [14].

Wet-lab experiments can be used to engineer a protein
with a specific mutation, and the mutant directly assessed
to infer the effect of that amino acid substitution. The wild
type and mutant proteins can be denatured to determine
their relative unfolding rates, from which the free energy
of unfolding (∆∆G) can be calculated; it is an indicator of
whether a particular mutation is stabilizing or destabilizing,
and to what degree. Existing experimental data about various
mutations performed in physical proteins is available in the
ProTherm database [23].

Unfortunately, conducting mutagenesis experiments on
physical proteins is expensive and time consuming, and thus
experimental data about the effects of mutations is limited.
Therefore, computational methods can be helpful in estimat-
ing the effects of a mutation on a protein structure, and
several computational methods have been developed in the
past, with various degrees of success.

2 RELATED WORK

In this section we survey the existing experimental and com-
putational work for predicting the effects of amino acid sub-
stitutions.

2.1 Experiments On Physical Proteins

Wet-lab experiments provide the gold standard for directly
measuring the effect of mutations on a protein structure,
measured by ∆∆G with respect to the wild type. Matthews



et al. have generated many mutants of Lysozyme from the
Bacteriophage T4 [2, 7, 12, 26–28]. They found that residues
with high mobility or high solvent accessibility are much
less susceptible to destabilizing substitutions. Although such
studies provide precise, experimentally verified insights into
the role of a residue based on its mutation, they are time
consuming and cost prohibitive. Additionally, some muta-
tions are so destabilizing that the mutant protein cannot be
crystallized at all. Thus, only a small subset of all possible
mutations can be studied explicitly.

2.2 Computational Approaches

To complement and inform mutation studies performed on
physical proteins, computational methods have been devel-
oped over the years. These methods strive to predict the
effects of mutations. Several have high prediction and accu-
racy rates in the 70-80% range.

Several computational methods for assessing the effects of
mutations fix the atoms in the backbone of a protein and
proceed to search for the best side-chain conformation, while
others utilize rotamer side chain libraries to adjust a struc-
ture in response to an amino acid substitution [11, 19, 31].
Other approaches [24] rely on heuristic energy measurements
to predict the stability of proteins in which side chains are
perturbed. Yet another approach [15] estimates the folding
free energy changes upon mutations using database-derived
potentials. Prevost [32] used Molecular Dynamics simula-
tions to study the effect of mutating Barnase, and concluded
that the major contributions to the free energy difference
arose from non-bonded interactions. Thus, progress has been
made in predicting the effects of mutations on protein stabil-
ity. However, many such methods rely on computationally
intensive energy calculations and are therefore time intensive.

2.3 Combinatorial, Rigidity Based
Methods

A first generation of rigidity-based mutation analysis tools are
available, but the extent of the types of in silico mutations
that they can perform are limited. Rigidity Analysis [16] is
a combinatorial technique for identifying the flexible regions
of biomolecules. Figure 1 depicts the cartoon and rigidity
analysis results of PDB file 1hvr of HIV-1 protease. Rigidity
analysis, which identifies rigid clusters of atoms, is distin-
guished from most other methods because it is fast. It does
not rely on homologous protein data, nor costly all-atom
energy calculations.

In our previous work we used rigidity analysis to probe how
a mutation to glycine destabilizes a protein’s structure. We
compared the rigidity properties of the wild type structure
to the rigidity properties of a mutant that we generated in
silico using KINARI-Mutagen [18]. On input of a Protein
Data Bank (PDB) structure file, KINARI-Mutagen identifies
hydrogen bonds and hydrophobic interactions. The stabiliz-
ing interactions involving the atoms of the side chain being
mutated to Glycine are removed from the protein’s model.
This is equivalent to computationally mutating a specific

residue to Glycine, the smallest amino acid which has no side
chain atoms that form stabilizing bonds.

The effect of a mutation on the protein’s structural stability
can be correlated with its effect on a protein’s rigidity. In our
previous work [5, 17] we measured the effect of the mutation
by recording the change in the size of the Largest Rigid
Cluster (LRC) of the mutant versus the wild type (WT, non-
mutated protein). The rationale was that the LRC is an
indicator of the protein’s rigidity or flexibility. Predictions
were validated against experimentally derived ∆∆G unfolding
measurements from the ProTherm [23] database. A negative
∆∆G value for a mutant structure reveals that the mutant
is less stable than the wild type, and thus the amino acid
substitution is destabilizing.

2.4 Machine Learning Based Approaches

Machine learning (ML) is a branch of artificial intelligence
involving algorithms that allow programs to classify, group,
and learn from data. The regression problem proceeds via
the following steps: a) represent a set of known data points as
a set of feature vectors labeled by the corresponding output
value, b) train a model that best maps inputs to the correct
output, c) use the model to make predictions on a set of new
(e.g. held out) data points. In Section 5 we detail each of
the Support Vector Regression, Random Forest, and Deep
Neural Network methods we used.

Machine learning and statistical methods have been de-
veloped to help predict the effects of mutations and to infer
which residues are critical. Cheng et al. [10] used Support
Vector Machines to predict with 84% accuracy the sign of the
stability change for a protein due to a single-site mutation.
Also, data of amino acid replacements that are tolerated
within families of homologous proteins have been used to
devise stability scores for predicting the effect of residue sub-
stitutions [35], which has been extended and implemented
into an online web server [36].

In our previous work [17], we used an SVM-based model
that combines rigidity analysis and evolutionary conservation,
in addition to amino acid type and solvent accessible surface

(a) Cartoon Representation (b) Rigidity Analysis

Figure 1: Rigidity analysis of PDB file 1hvr identi-
fies sets of atoms belonging to rigid clusters. The
largest rigid cluster is shown orange, which spans
both halves of the protein. The larger rigid clusters
are (cluster size : count) 11:6, 12:5, 15:2, 16:2, 19:2,
23:1 and 1371:1.



area, to a dataset of proteins with experimentally known
critical residues. We achieved over 77% accuracy in predicting
the sign of the change of stability for a single point mutation
to Glycine and Alanine.

Brender, et al [9], have developed a scoring function that
reasons about protein-protein interfaces. They used sequence-
and residue-level energy potentials in conjunction with a Ran-
dom Forest (RF) approach to achieve a Pearson correlation
coefficient of approximately 80% between predicted and ob-
served binding free-energy changes upon mutations. Jia, et
al [20], have employed a variety of Machine Learning Tools
to generate several models based on thermostability data for
assessing the effects of single point mutations. They used 798
mutants from 51 different protein structures for which there is
∆∆G data, and attained accuracy rates ranging from 78-85%
among SVM, RF, NBC, KNN, ANN, and PLS approaches,
with the Random Forest Approach having the highest accu-
racy. Li, et al [25], developed a model based on the Random
Forest algorithm for predicting thermostability changes due
to amino acid substitutions. In their approach they relied
on 41 features, and achieved accuracies of 79.9%, 78.2%, and
78.7% for single, double, and multiple point mutation.

3 MOTIVATION

As discussed above, existing experimental methods still pro-
vide only partial information about the effects of mutations.
Computational methods can complement this information,
but many existing methods are time consuming, or alterna-
tively, their accuracy could be improved. There is a need
for fast and reliable methods that can efficiently analyze the
effect of a mutation of an amino acid on the structure of a
protein. As already discussed, machine learning based meth-
ods have been used in the past by us and other researchers,
and they are a promising avenue to explore further.

In this work, we present fast and efficient machine learning
and graph theory based methods for predicting the effect of
a mutation on a protein structure. Through rigidity analysis,
support vector regression, random forests and deep neural
networks, we predict the effect of a mutation on the ∆∆G
of a protein. We validated our results by using experimental
data from the ProTherm database. Our approach achieves
strong performance in predicting the effect of a single point
mutation on a protein structure, while being fast enough to
run in a few minutes and sometimes seconds.

Several aspects of our work distinguish it from others.
Firstly, none of our features in use by our machine
learning models require calculating energetics of var-
ious biophysical phenomena. The calculation of our met-
rics does not require costly calculations based on statistical
mechanics nor molecular energetics. Our features are strictly
structure-based, which is a purposeful design decision to en-
able near real-time run-times. Secondly, the number of
data points that we use is far more than most oth-
ers have used. With 2,072 mutations for which we have
experimentally derived data from ProTherm, our dataset
far surpasses in size most others, many of which have fewer

than 1,000. This dataset is far greater than we used in our
previous work due to our recent expanded capabilities of
generating mutations in silico [4]. Lastly, the majority of
our features in use by our models are derived from
quick calculations detailing the rigidity properties of
mutant, wild type pairs of protein structures. With
the exception of our past proof-of-concept work, nobody else
has used rigidity metrics on a large scale to assess their use
in enhancing models for predicting the effects of mutations.

4 DATA PREPARATION

Here we describe the source of our data, including how we
processed the ProTherm ∆∆G values, how we generated in
silico mutants, and the split of the data into training, devel-
opment and testing sets for building our machine learning
models. We enumerate our features and explain how each is
normalized.

4.1 ProTherm Data, in silico mutants

We downloaded the entire ProTherm plain-text database,
and identified 2,072 entries for single mutations with ∆∆G
values. See Table 1 for a summary of the proteins and their
mutations that we retained.

We used our in-house software, Protein Mutation High
Throughput (ProMuteHT) [4], for quickly generating pro-
tein mutants in silico, with the mutations for which we had
ProTherm stability data. That software is composed of
several parts, including custom scripts and algorithms, inte-
grated with off-the-shelf open access tools and libraries. It
generates large-to-small (LTS) as well as small-to-large (STL)
amino acid substitutions. For an LTS mutation ProMuteHT
removes atoms from a PDB file to simulate a substitution.
For example, mutating Leucine to Alanine involves removing
from a protein structure file the CG, CD1 and CD2 atoms
from the Leucine being mutated. When a small residue is
mutated to a larger one, the STL module relies on the freely
availably SCWRL 4.0 [22] software that makes predictions
about a side chain’s orientation. To account for the steric
clashes that might arise due to replacing a small residue with
a larger one, we used the NAMD [30] software to perform
500 energy minimization steps, requiring approximately 5
seconds.

The rigidity of each mutant and its wild type were analyzed
using the publicly available rigidity software by Fox et. al [13].
The rigidity output data is of the form rigid cluster size :
count, which offers the distribution of clusters and their
sizes that were identified. We used the rigidity data for
each mutant, wild type pair to calculate 6 different rigidity
metrics. See [3] for a complete discussion explaining the
motivation and utility of these metrics at inferring the effects
of mutations.

4.2 Features and Data Split

From the ProTherm data and our rigidity calculations, we
derived the following 60 features:

• WT SASA: how exposed to the surface a residue is.



Table 1: Summary of the data obtained from
ProTherm.

Parsed Numerical Results

Unique Proteins 44
Total Mutations 2,072
Mutated Residues that are Hydrophobic 892
Mutated Residues that are Aromatic 161
Mutated Residues that are Polar 432
Mutated Residues that are Charged 654
Mutated Residues with 0-30% SASA 932
Mutated Residues with 30-50% SASA 532
Mutated Residues with 50+ SASA% SASA 608

• WT Secondary Structure: four features indicating
whether the mutation took place in a sheet, coil, turn
or helix.

• Temperature and pH at which the experiment for
calculating ∆∆G was performed.

• Rigidity Distance (RD): one of lm, sig1, sig2, sig3,
sig4, sig5. See [3] for a full explanation.
• WT Rigid Cluster Fraction: 24 features giving the

fraction of atoms in the WT that belong to rigid
clusters of size 2, 3, . . . , 20, 21-30, 31-50, 51-100, 101-
1000 and 1001+, respectively.
• Mutation Rigid Cluster Fraction: 24 features giving

the fraction of atoms in the mutation belonging to
the same set of bins as above.

• Residue type: four binary features indicating whether
the residue is Charged (D, E, K, R), Polar (N, Q,
S, T), Aromatic (F, H, W, Y), or Hydrophobic
(A,C,G,I,L,M,P,V).

Table 2: Feature summary.

Feat.
#

Name Norm. Range

1 WT SASA None [0, 1]
2-5 WT Secondary Structure None {0, 1}
6 Temperature 0-1 [0, 1]
7 Potential of Hydrogen (pH) pH ≈ [−1, 1]
8 Rigidity Distance (RD) Standard R
9-32 WT Rigid Cluster Frac. None [0, 1]
33-56 Residue Rigid Cluster Frac. None [0, 1]
57-60 Residue Type None {0, 1}

These features along with their normalization scheme and
range are summarized in Table 2.

Normalization “0-1” refers to the mapping

xi −min(x)

max(x)−min(x)
(1)

while “pH” normalization refers to a slight variant that maps
pH of 0 to -1, 7 to 0 and 14 to 1:

xi − 7

7
. (2)

Standardization refers to normalizing the feature to be zero-
mean and unit-variance:

xi − µ
σ

(3)

We estimated the feature mean (µ) and standard devia-
tion (σ) on the training set, and used these same values to
transform the development and test sets. Our ∆∆G labels
were also standardized prior to training using the training
set statistics. The ∆∆G values fall in the range of [-5.02,
4.55] after standardization.

Our 2,072 data points were randomly split into a training
set (1,438 data points), a development set (324 data points)
and a test set (310 data points), under the constraint that
all instances of each WT appear in a single dataset. This
constraint was used so that we can assess how well
our methods generalize to new protein wild types,
and means that our reported results are more pes-
simistic than they would be under an unconstrained
random split.

5 METHODS : SVR, RF, DNN

In this section, we provide more details about three popular
machine learning methods, Random Forest, Support Vector
Regression and Deep Neural Networks, that we used for
predicting ∆∆G. That is, we solve a regression problem: our
objective is building a function that minimizes the difference
between calculated (predicted) and actual observed target
values for all data points in the training set.

5.1 SVR

Support Vector Machines are supervised learning models
that are widely used for solving classification and regression
problems. In case of Support Vector Regression (SVR), the
aim is to minimize the generalization error bound in order
to achieve strong generalization [6]. The generalization error
bound is the combination of the training error and a regular-
ization term that controls the complexity of hypothesis space
[34]. SVR works based on generating a regression function
in a high dimensional feature space where the input data
are implicitly mapped using a kernel function. The kernel
function can be linear or nonlinear (polynomial, sigmoid or
radial basis).

The SVR model that we used in this work for ∆∆G predic-
tion were implemented using Scikit-learn [29], which is a free
machine learning library for the Python programming lan-
guage. Scikit-learn offers a variety of easy to use clustering,
classification and regression algorithms implementations.

We used grid search to tune the parameters of the model
using our training and development sets. For the SVR model
we tuned three main parameters; the penalty parameter of the
error term (regularization constant) C, the kernel function
and the kernel coefficient γ. Using the development set, we
evaluated the prediction accuracy using values chosen from
range of 0.1 to 1000 for C, examined RBF, linear and sigmoid
as the kernel functions and changed γ values from 0.0001 to



1. The lowest error was achieved with C equal to 150, when
the RBF kernel was used and γ was set to 0.1.

5.2 Random Forest

Random forests (RFs) work by utilizing the power of decision
trees. A decision tree infers decision rules from the training
data to carry out a regression or classification task. The
decision rules are generated based on the value of a feature
that yields the best split of the training data using a metric
such as information gain or Gini impurity index. A random
forest is an ensemble learning method that fits a number
of decision trees on multiple random sub-samples of the
training set and then use averaging to boost the accuracy of
the prediction and control overfitting [8]. Each tree uses a
sample size the same as the original training set. The method
allows these samples to be the same as the original training
set (Replicate) or to be drawn with replacement (Bagging).

The random forest model was also implemented using
Scikit-learn. To tune the model parameters, we examined
the prediction error while changing the number of estima-
tors (trees in the forest) from 10 to 1000. The accuracy
of the model did not show improvements when beyond 150
estimators were used. For resampling method, we used bag-
ging (Bootstrap Aggregation), where each tree in the forest
was trained using random subsamples from the training set
chosen with replacement. Bagging showed over 30 percent
improvement in accuracy compared to Replicate. For the
rest of parameters such as maximum depth of the tree and
minimum number of samples required to split an internal
node we used Scikit-learn default values, but plan to include
these parameters in our future tuning experiments.

5.3 DNN

A Deep Neural Network (DNN) is a supervised machine learn-
ing model in which the input undergoes multiple ”hidden”
layers of non-linear transformation before a prediction is
made. This generalizes the standard, shallow neural network
which has only a single hidden layer. Predictions, y, in our
DNN are made according to the following:

y = WT
(L)h(L) + b(L) (4)

h(i) = g
(
WT

(i−1)h(i−1) + b(i−1)

)
for i = 1, . . . , L (5)

where h(0) denotes the input x, and our model parameters
are matrices W(0), . . . ,W(L) and vectors b(0), . . . , b(L). The
hidden activation function is denoted g; we explored two
options: g(z) = tanh(z) and g(z) = ReLU(z) = max(0, z).
Our model parameters are learned using first order optimiza-
tion algorithms to minimize training set mean squared error
(MSE).

We implemented our DNN using TensorFlow [1], an open-
source machine learning toolkit. Our hyperparameters were
tuned using a combination of random search and the Spearmint
[33] tool. Spearmint is a Bayesian hyperparameter optimiza-
tion tool, incrementally exploring the hyperparameter space
with the objective of maximizing expected improvement.

We tuned several hyperparameters on the developed set:
number of hidden layers (1 - 4), number of units per layer
(10 - 100), learning rate (0.0001 - 0.5), weight initialization
range (0.0001 - 0.1), activation function (tanh, ReLU), and
the optimizer used for backpropagation (stochastic minibatch
gradient descent, adam [21]).

6 RESULTS

The SVR, RF and DNN models were trained initially using
the training set and the hyperparameters were tuned to opti-
mize development set performance as described in Section 5.
After the optimal parameters were identified, in a final round
of training for SVR and RF, the samples in training set and
development set were combined and used as the training set.
For DNN, whose results were highly dependent on the initial
random weight initialization, we omitted this step of combina-
tion and retraining, and simply used the best model trained
on the training set alone. We repeated our experiments using
the features mentioned in Section 4 for six configurations
where in each configuration we included one RD measure
for training. The prediction accuracy of the models on the
test set was then evaluated using two metrics. We calculated
Root Mean Square Error (RMSE) and the Pearson corre-
lation coefficient between predicted and expected (actual)
∆∆G values. The prediction accuracy of the three models for
each RD measure is presented in Table 3. As shown in the
table, the RF model consistently outperformed the SVR and
DNN models by having lower RMSE and higher correlation
coefficients. The DNN performance typically falls in-between
the other two. This relative ordering is fairly consistent re-
gardless of the RD value used as a feature to train the models.
Averaged over the six experiments (last rows of Table 3), the
RF gives the best performance and the SVR gives the worst.
While the RF RMSE and correlation variation over different
RDs is rather small, RF generated the least RMSE (0.820)
and highest correlation (0.694) when sig2 was used in the
feature set. With SVR and DNN sig1 and lm showed the
best performance among the RDs, respectively.

7 DISCUSSION

To assess the utility of our three models in predicting the
values of ∆∆G due to point mutations, we compared the
Pearson Correlation Coefficients of our Random Forest model
(our highest scoring average) against equivalent coefficients
for 12 other approaches that we found in the literature [20].
Our Pearson Correlation Coefficient value of 0.689 would
rank our RF approach 9th of 12, with Prethemut, ProMaya,
and ELASPIC having attained higher correlation coefficient
values of 0.72, 0.74, and 0.77, respectively. Understandably,
any such comparison must be taken with caution, for exam-
ple due to different data set sizes, different cross validation
approaches, as well as data preprocessing. And although
for this work we focused on a regression model rather than
attempting a binary classification of the data, it is not un-
common in the literature for binary classification models to
excluded neutral (0±0.5 ∆∆G kCal/mol) mutants. Any such



Table 3: Prediction accuracy (RMSE = Root Mean
Square Error, C = Pearson Correlation)

RD Accuracy Measure SVR RF DNN

lm RMSE 0.961 0.839 0.865
C 0.534 0.673 0.647

sig1 RMSE 0.945 0.822 0.963
C 0.555 0.691 0.528

sig2 RMSE 0.960 0.820 0.957
C 0.534 0.694 0.537

sig3 RMSE 0.959 0.822 0.946
C 0.539 0.692 0.551

sig4 RMSE 0.986 0.827 0.931
C 0.500 0.687 0.571

sig5 RMSE 0.966 0.821 0.942
C 0.524 0.694 0.557

Avg. RMSE 0.963 0.825 0.934
C 0.531 0.689 0.565

similar pre-processing, which we did not do, might be em-
ployed by other methods and models attempting regression
analyses, which might ultimately affect a ranking of different
approaches.

Another important point worth reiterating is that none of
our features were attained via direct calculations of energetic
terms arising from changes in a protein’s confirmation due to
a mutation. Although we previously indicated that doing so
was a conscious effort on our part aiming to minimize costly
energy calculations, indeed excluding energy terms might be
related to a possible limitation of our approach. Namely, an
amino acid substitution on a protein structure might induce
a destabilizing or stabilizing effect due to reasons that are
not structure based, which our method would not be able to
reason about because our features are all purely structural
in nature.

8 CONCLUSIONS

We developed and present several machine learning based
methods to predict the effects of mutations on the stability of
a protein. In particular, our method predicts the change to
the free energy of unfolding upon mutation (∆∆G), using a
combination of graph based rigidity analysis and features like
solvent accessible surface area (SASA), temperature, pH, and
the type of mutated amino acid. We trained and tested our
methods on an extensive dataset taken from the ProTherm
database, which contains experimental information about
point mutations. We show that our algorithm, especially the
Random Forest (RF) based predictor, can predict the ∆∆G
with high accuracy.

Our next steps involve developing methods to assess the
effects of multiple point mutations. While many methods
predict the effect of a single mutation on a protein structure,
only very few of them assess how multiple amino acid substi-
tutions affect a protein’s structure and stability. Additionally,
since our method is very fast and efficient, requiring as little

as a few seconds to conduct a computational experiment, we
are developing a server which will allow users to conduct hy-
pothesis testing about the effects of mutations. We envision
that our server will run in near real-time, and thus permit
high-throughput studies, enabling screening a large number
of amino acid substitutions and their effect on a protein’s
stability.
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